Reduced basis methods for parametrized non-linear evolution equations

Martin Drohmann

Institute of Numerical and Applied Mathethematics, Münster http://www.math.uni-muenster.de/num

26/05/2012

Motivation: Reduced Basis Method

RB Scenario:

▶ Parametrized applications relying on time-critical or many repeated simulations

Goals:

- ► Offline-/Online decomposition
- Efficient reduced simulations
- A posteriori error control

References: [Patera&Rozza, 2006], [Haasdonk et al., 2008]

Motivation: Reduced Basis Method

RB Scenario:

▶ Parametrized applications relying on time-critical or many repeated simulations

Goals:

- ► Offline-/Online decomposition
- Efficient reduced simulations
- A posteriori error control

References: [Patera&Rozza, 2006], [Haasdonk et al., 2008]

Motivation: Reduced Basis Method

RB Scenario:

▶ Parametrized applications relying on time-critical or many repeated simulations

Goals:

- ► Offline-/Online decomposition
- ► Efficient reduced simulations
- A posteriori error control

References: [Patera&Rozza, 2006], [Haasdonk et al., 2008]

Parametrized PDE

Find

$$u:[0,T_{\max}]\to\mathcal{W}\subset L^2(\Omega)$$
, s.t.

$$u(0) = u_0$$

$$\partial_t u(t) - \mathcal{L} \qquad [u(t)] = 0$$

plus boundary conditions.

Parametrized PDE

Find, for
$$\mu \in \mathcal{P} \subset \mathbb{R}^p$$
, $u:[0,T_{\max}] \to \mathcal{W} \subset L^2(\Omega)$, s.t.

$$u(0)=u_0(\boldsymbol{\mu})$$

$$\partial_t u(t) - \mathcal{L}$$
 $[u(t)] = 0$

plus boundary conditions.

Parametrized PDE

Find, for $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $u:[0,T_{\max}] \to \mathcal{W} \subset L^2(\Omega)$, s.t.

$$u(0)=u_0(\mu)$$

 $\partial_t u(t) - \mathcal{L}(\mu)[u(t)] = 0$

Parametrized PDE

Find, for $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $u:[0,T_{\max}] \to \mathcal{W} \subset L^2(\Omega)$, s.t.

$$u(0)=u_0(\boldsymbol{\mu})$$

$$\partial_t u(t) - \mathcal{L}(\mu)[u(t)] = 0$$

Parametrized PDE

Find, for $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $u:[0,T_{\max}] \to \mathcal{W} \subset L^2(\Omega)$, s.t.

$$u(0)=u_0(\mu)$$

$$\partial_t u(t) - \mathcal{L}(\mu)[u(t)] = 0$$

Parametrized PDE

Find, for $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $u:[0,T_{\max}] \to \mathcal{W} \subset L^2(\Omega)$, s.t.

$$u(0) = u_0(\boldsymbol{\mu})$$
$$\partial_t u(t) - \mathcal{L}(\boldsymbol{\mu})[u(t)] = 0$$

Parametrized PDE

Find, for $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $u:[0,T_{\max}] \to \mathcal{W} \subset L^2(\Omega)$, s.t.

$$u(0) = u_0(\mu)$$
$$\partial_t u(t) - \mathcal{L}(\mu) [u(t)] = 0$$

Parametrized PDE

Find, for $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $u: [0, T_{\max}] \to \mathcal{W} \subset L^2(\Omega)$, s.t.

$$u(0) = u_0(\mu)$$
$$\partial_t u(t) - \mathcal{L}(\mu) [u(t)] = 0$$

Parametrized PDE

Find, for $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $u:[0,T_{\max}] \to \mathcal{W} \subset L^2(\Omega)$, s.t.

$$u(0) = u_0(\mu)$$
$$\partial_t u(t) - \mathcal{L}(\mu) [u(t)] = 0$$

Example: FV scheme for Burgers-Equation

Burgers Equation

$$\partial_t u - \nabla \mathbf{v} u^{\mu_1} = 0 \tag{1}$$

e.g. discretized by finite volume method with Engquist-Osher flux.

Example: FV scheme for Burgers-Equation

Burgers Equation

$$\partial_t u - \nabla \mathbf{v} u^{\mu_1} = 0 \tag{1}$$

- e.g. discretized by finite volume method with Engquist-Osher flux.
 - ▶ Parameter vector $\mu := (\mu_1) \in [1, 2]$.
 - ► smooth initial data
 - ightharpoonup rectangular 120 imes 60 grid with K=100 time steps.

Questions

- 1. How can we compute efficient reduced simulations?
- 2. How can we compute efficient reduced simulations for non-linear problems?
- 3. How can we generate the reduced basis space?
- 4. How can we apply the RB method to our favorite problems?

1. How can we compute efficient reduced simulations?

Reduced simulation (linear with affine parameter dependence) For $\mu \in \mathcal{P}$ find $\left\{ \begin{matrix} u_h^k(\mu) \end{matrix} \right\}_{k=0}^K \subset \mathcal{W}_h$, such that $\begin{matrix} u_h^0(\mu) := \mathcal{P}_h \left[u_0(\mu) \right] \\ \left(\operatorname{Id} - \Delta t \mathcal{L}_{h,l}(\mu) \right) \left[\begin{matrix} u_h^{k+1}(\mu) \end{matrix} \right] = \left(\operatorname{Id} + \Delta t \mathcal{L}_{h,E}(\mu) \right) \left[\begin{matrix} u_h^k(\mu) \end{matrix} \right].$

Reduced simulation (linear with affine parameter dependence)

For
$$\mu \in \mathcal{P}$$
 find $\left\{u_{\mathrm{red}}^k(\mu)\right\}_{k=0}^K \subset \mathcal{W}_{\mathrm{red}} \subset \mathcal{W}_h$, such that

$$\begin{split} u_h^0(\mu) &:= \mathcal{P}_h \left[u_0(\mu) \right] \\ \left(\operatorname{Id} - \Delta t \mathcal{L}_{h,\ell}(\mu) \right) \left[u_h^{k+1}(\mu) \right] &= \left(\operatorname{Id} + \Delta t \mathcal{L}_{h,E}(\mu) \right) \left[u_h^k(\mu) \right]. \end{split}$$

Reduced simulation (linear with affine parameter dependence)

For
$$\mu \in \mathcal{P}$$
 find $\left\{u_{\mathrm{red}}^k(\mu)\right\}_{k=0}^K \subset \mathcal{W}_{\mathrm{red}} \subset \mathcal{W}_h$, such that

$$\begin{split} u_{\mathrm{red}}^0(\mu) &:= \mathcal{P}_{\mathrm{red?}}[u_0(\mu)] \\ \left(\mathrm{Id} - \Delta t \underline{\mathcal{L}}_{h,I}(\mu) \right) \left[u_h^{k+1}(\mu) \right] &= \left(\mathrm{Id} + \Delta t \underline{\mathcal{L}}_{h,E}(\mu) \right) \left[u_h^{k}(\mu) \right]. \end{split}$$

Size: *NxN* Structure: Dense Size: *Nx*1 Size: *NxN* Structure: Sparse

Size: *Nx*1

Reduced simulation (linear with affine parameter dependence)

For
$$\mu \in \mathcal{P}$$
 find $\left\{ u_{\mathrm{red}}^k(\mu) \right\}_{k=0}^K \subset \mathcal{W}_{\mathrm{red}} \subset \mathcal{W}_h$, such that

$$\begin{split} u_{\mathrm{red}}^0(\mu) &:= \mathcal{P}_{\mathrm{red}?} \left[u_0(\mu) \right] \\ \left(\mathrm{Id} - \Delta t \frac{\mathcal{L}_{h,l}(\mu)}{\mathcal{L}_{h,l}(\mu)} \right) \left[u_{\mathrm{red}}^{k+1}(\mu) \right] &= \left(\mathrm{Id} + \Delta t \frac{\mathcal{L}_{h,E}(\mu)}{\mathcal{L}_{h,E}(\mu)} \right) \left[u_{\mathrm{red}}^k(\mu) \right]. \end{split}$$

Size: NxN Structure: Dense Size: *Nx*1

Size: *NxN* Structure: Sparse

Size: *Nx*1

Reduced simulation (linear with affine parameter dependence)

For
$$\mu \in \mathcal{P}$$
 find $\left\{u_{\mathrm{red}}^k(\mu)\right\}_{k=0}^K \subset \mathcal{W}_{\mathrm{red}} \subset \mathcal{W}_h$, such that

$$\begin{split} u_{\mathrm{red}}^0(\mu) &:= \mathcal{P}_{\mathrm{red}?}\left[u_0(\mu)\right] \\ \left(\mathrm{Id} - \Delta t \mathcal{L}_{\mathrm{red},I?}(\mu)\right) \left[u_{\mathrm{red}}^{k+1}(\mu)\right] &= \left(\mathrm{Id} + \Delta t \mathcal{L}_{\mathrm{red},E?}(\mu)\right) \left[u_{\mathrm{red}}^{k}(\mu)\right]. \end{split}$$

Size: NxN Structure: Dense Size *Nx*1 Size: *NxN* Structure: Sparse

Size: *Nx*1

Affine parameter dependence

Assume $\mathcal{L}_{h,I/E}$ can be written as

$$\mathcal{L}_{h,I/E}(\mu)[u_h] = \sum_{q=1}^{Q_{I/E}} \sigma_{I/E}^q(\mu) \mathcal{L}_{h,I/E}^q[u_h].$$

 $\sum_{q=1}^{Q_{I/E}}$

Size: HxHStructure: Sparse

Affine parameter dependence

Assume $\mathcal{L}_{h,I/E}$ can be written as

$$\mathcal{L}_{h,I/E}(\mu)[u_h] = \sum_{q=1}^{Q_{I/E}} \sigma_{I/E}^q(\mu) \mathcal{L}_{h,I/E}^q[u_h].$$

 $\sum_{q=1}^{Q_{I/E}}$

Size: HxHStructure: Sparse

Affine parameter dependence

Assume $\mathcal{L}_{h,I/E}$ can be written as

$$\mathcal{L}_{h,I/E}(\mu)[u_h] = \sum_{q=1}^{Q_{I/E}} \sigma_{I/E}^q(\mu) \mathcal{L}_{h,I/E}^q[u_h].$$

Reduced operators are: $\mathcal{L}_{\mathsf{red},I/E}(\mu) = \mathcal{P}_{\mathsf{red}}[\mathcal{L}_{h,I/E}(\mu)]$

$$\sum_{q=1}^{Q_{I/E}}$$

Size: *HxH*Structure: Sparse

Assume RB space spanned by N basis functions $\Phi := \{ \varphi_i \}_{i=1}^N$

Offline matrices

Reduction of parameter independent components: $\mathcal{P}_{\mathsf{red}}\left[\mathcal{L}^q_{h,I/E}
ight]$

Φ^t Size: *NxH* Structure: Dense $\mathcal{L}^q_{h,I/E}$ Size: HxHStructure: Sparse

Φ Size: *Hxi* Structure Dense

$$\mathcal{L}_{\mathsf{red},I/E}(\mu) = \sum_{q=1}^{Q_{I/E}} \sigma_{I/E}^q(\mu) \; \mathcal{P}_{\mathsf{red}}[\mathcal{L}_{h,I/E}^q]$$

$$\mathcal{L}_{\mathsf{red},I/E}(\mu) = \sum_{q=1}^{Q_{I/E}}$$

Size: *N×N* Structure: Dense

2. How can we compute efficient reduced simulations for non-linear problems?

Reduced basis scheme (DHO, 2012)

Reduced simulation (implicit/explicit with Newton scheme)

For $\mu \in \mathcal{P}$ find $\left\{u_{\text{red}}^k(\mu)\right\}_{k=0}^K \subset \mathcal{W}_{\text{red}} \subset \mathcal{W}_h$, such that

$$u_{\text{red}}^0 := \mathcal{P}_{\text{red}}\left[u_0(\boldsymbol{\mu})\right], \qquad \qquad u_{\text{red}}^{k+1} := u_{\text{red}}^{k+1,\nu_{\text{max}}(k)}$$

with Newton iteration

$$\begin{aligned} u_{\text{red}}^{k+1,0} &:= u_{\text{red}}^k, \qquad u_{\text{red}}^{k+1,\nu+1} := u_{\text{red}}^{k+1,\nu} + \delta_{\text{red}}^{k+1,\nu+1}, \\ \left(\text{Id} + \Delta t \mathsf{D} \mathcal{L}_{\text{red},I?} |_{u_{\text{red}}^{k+1,\nu}} \right) \left[\delta_{\text{red}}^{k+1,\nu+1} \right] &= u_{\text{red}}^k - u_{\text{red}}^{k+1,\nu} - \Delta t \left(\mathcal{L}_{\text{red},I?} \left[u_{\text{red}}^{k+1,\nu} \right] + \mathcal{L}_{\text{red},\textit{E?}} \left[u_{\text{red}}^k \right] \right) \end{aligned}$$

What to do with the operators?

Problem

No affine parameter decomposition...

What to do with the operators?

Problem

No affine parameter decomposition...

Answer

Empirical operator interpolation!

ightharpoonup interpolation space $\mathcal{X}^{\mathcal{I}}$

Base functions:

ightharpoonup interpolation space $\mathcal{X}^{\mathcal{I}}$

Base functions:

ightharpoonup interpolation nodes $\mathcal{T}^{\mathcal{I}}$

ightharpoonup interpolation space $\mathcal{X}^{\mathcal{I}}$

Base functions:

ightharpoonup interpolation nodes $\mathcal{T}^{\mathcal{I}}$

Example: polynomial interpolation

Polynomial interpolation

- $\blacktriangleright \ \mathcal{X} := L^{\infty}([0,1])$
- $m \mathcal X^{\mathcal I_{m p}} := \Pi_{m p}$ polynomials of degree m p.
- $ightharpoonup T^{\mathcal{I}_{\pmb{p}}}$ e.g. Chebyshev points.

Example: polynomial interpolation

Polynomial interpolation

- $ightharpoonup \mathcal{X}^{\mathcal{I}_{m{p}}} := \Pi_{m{p}}$ polynomials of degree $m{p}$.
- $ightharpoonup T^{\mathcal{I}_{\pmb{p}}}$ e.g. Chebyshev points.
- ▶ works only in 1D
- polynomials not always best selection

Empirical interpolation[Barrault et al, 2004]

Empirical interpolation

- $ightarrow \mathcal{X}^{\mathcal{I}_{\pmb{M}}} := \operatorname{span}\{q_{\pmb{m}}\}_{\pmb{m}=\pmb{1}}^{\pmb{M}}$ "empirically" determined.
- $ightharpoonup T^{\mathcal{I}_{M}}$ "empirically" determined.

Empirical interpolation[Barrault et al, 2004]

Empirical interpolation

- $ightharpoonup \mathcal{X}^{\mathcal{I}_{\pmb{M}}} := \operatorname{span}\{q_{\pmb{m}}\}_{\pmb{m}=1}^{\pmb{M}}$ "empirically" determined.
- $ightharpoonup T^{\mathcal{I}_{M}}$ "empirically" determined.

For selection of interpolation nodes and functions: ▶ El-greedy

Empirical interpolation[Barrault et al, 2004]

Empirical interpolation for parametrized functions $f(\mu): \mathbb{R} \to \mathbb{R}$.

Base functions:

▶ "magic points" $\{x_m\}_{m=1}^M$

▶ basis functions $\{q_m\}_{m=1}^M$

Empirical operator interpolation [DHO11]

Empirical interpolation for $\,$ parametrized discrete operators $\,\mathcal{L}_h \in \mathcal{W}_h \,.$

▶ "magic points" $\{x_m\}_{m=1}^M$ ▶ basis functions $\{q_m\}_{m=1}^M$ Discrete operators need to have "H-independent Dof dependence".

Empirical operator interpolation: Subgrids

Efficient evaluations

The operator evaluations in interpolation points $\mathcal{L}_{h,}(\mu)[\cdot](x_m)$ can be computed efficiently during online phase, if

- ▶ the operator has a localized structure (small stencil) and
- ▶ the local geometry information is precomputed during offline phase.

Empirical interpolation: Fréchet derivative

Define
$$l_m(\mu): \mathcal{W}_h \to \mathbb{R}, u_h \mapsto \mathcal{L}_h(\mu)[u_h](x_m)$$

Observation

$$\left(\mathsf{D}\left(\mathcal{I}_{M}\left[\mathcal{L}_{h}(\boldsymbol{\mu})\right]\right)|_{u_{\boldsymbol{h}}}\left[\boldsymbol{v}_{h}\right]\right)\left(\boldsymbol{x}_{m}\right)=\mathsf{D}I_{m}(\boldsymbol{\mu})|_{u_{\boldsymbol{h}}}\left[\boldsymbol{v}_{h}\right]$$

still efficiently computable with complexity $\mathcal{O}(M)$.

Offline-/Online Decomposition

Compute matrices $\mathbf{L}_{I/E}$, $\mathbf{J}_I \in \mathbb{R}^{N \times M}$ depending on u_{red} and δ_{red} :

$$\left(\mathbf{L}_{I/E}\right)_{nm} = \sum_{m=1}^{M} I_{m}^{I/E}(\boldsymbol{\mu}) \left[u_{\mathrm{red}}\right] \int_{\Omega} q_{m} \varphi_{n}$$

$$(\mathbf{J}_I)_{nm} = \sum_{m=1}^M \mathbf{D} I_m^{I/E}(oldsymbol{\mu})|_{u_{
m red}} [\delta_{
m red}] \int_\Omega q_m arphi_n$$

3. How can we generate the reduced basis space?

Basis Generation methods

Reduce an "intelligent" selection of snapshots by

- ▶ Proper orthogonal decomposition,
- ► Greedy algorithms or
- a combination of both.

Basis Generation methods

Reduce an "intelligent" selection of snapshots by

- ▶ Proper orthogonal decomposition,
- ► Greedy algorithms or
- ► a combination of both.

Plus: Selection of "magic points" for empirical operator interpolation.

Basis Generation methods

Reduce an "intelligent" selection of snapshots by

- ▶ Proper orthogonal decomposition,
- ► Greedy algorithms or
- ► a combination of both

Plus: Selection of "magic points" for empirical operator interpolation.

Challenge: Control of error and basis sizes.

A posteriori error estimator (DHO 2012)

Aim

$$\|u_h^k(\boldsymbol{\mu}) - u_{\mathsf{red}}^k(\boldsymbol{\mu})\| \leq \eta^k(\boldsymbol{\mu})$$

Two main contributions:

- ▶ Projection error on W_{red} (exactly computable!)
- ightharpoonup Empirical interpolation error (M+M') trick

Theorem (A posteriori error estimator)

Assumptions:

- Operators fulfill "Lipschitz" properties:
 - $\|u-v+\Delta t \mathcal{L}_{I}[u]-\Delta t \mathcal{L}_{I}[v]\|_{\mathcal{W}_{L}} \geq \frac{1}{C_{I,\Delta L}} \|u-v\|_{\mathcal{W}_{L}}$
 - $\| u v \Delta t \mathcal{L}_{E} [u] + \Delta t \mathcal{L}_{E} [v] \|_{\mathcal{W}_{h}}^{"} \leq C_{E, \Delta t} \| u v \|_{\mathcal{W}_{h}}^{"}$
- M'-trick: Empirical interpolations exact for larger CRB space $\mathcal{W}_{M+M'}$ and $\mathcal{P}_h\left[u_0(\mu)\right] \in \mathcal{W}_{red}$

Theorem (A posteriori error estimator cont.)

Assumptions:

- ► Operators fulfill "Lipschitz" properties:
 - $\|u-v+\Delta t \mathcal{L}_{I}[u]-\Delta t \mathcal{L}_{I}[v]\|_{\mathcal{W}_{h}} \geq \frac{1}{C_{I} \wedge t} \|u-v\|_{\mathcal{W}_{h}}$
 - $\| u v \Delta t \mathcal{L}_{E} [u] + \Delta t \mathcal{L}_{E} [v] \|_{\mathcal{W}_{L}}^{"} \leq C_{E, \Delta t} \| u v \|_{\mathcal{W}_{L}}^{"}$
- M'-trick: Empirical interpolations exact for larger CRB space $\mathcal{W}_{M+M'}$ and $\mathcal{P}_h\left[u_0(\mu)\right] \in \mathcal{W}_{red}$

Then:

$$\left\|u_{red}^k(\mu)-u_h^k(\mu)\right\|\leq \eta_{N,M}^k(\mu)$$

wit h

$$\eta_{N,M}(\mu) := \sum_{i=0}^{k-1} C_{I,\Delta t}^{k-i+1} C_{E,\Delta t}^{k-i} \left(\left\| R_{I+E,M}^{k+1}(\mu) \right\| + \left\| R^{k+1}(\mu) \right\| \right)$$

Theorem (A posteriori error estimator)

Then:

$$\left\|u_{red}^k(\boldsymbol{\mu})-u_h^k(\boldsymbol{\mu})\right\|\leq \eta_{N,M}^k(\boldsymbol{\mu})$$

wit h

$$\eta_{N,M}(\mu) := \sum_{i=0}^{k-1} C_{I,\Delta t}^{k-i+1} C_{E,\Delta t}^{k-i} \left(\left\| R_{I+E,M}^{k+1}(\mu) \right\| + \left\| R^{k+1}(\mu) \right\| \right)$$

The residuals $R_{*,M}$ measure the empirical interpolation error, e.g.

$$R_{*,M}^{k+1,\nu} := \sum_{m=M}^{M+M'} I_m^* \left[u_{red}^{k+1,\nu} \right] \xi_m$$

Theorem (A posteriori error estimator cont.)

The residuals R^k are efficiently computable:

$$\begin{split} &\Delta t^2 \left\| \boldsymbol{R}^{k+1} \right\|^2 = \left\langle \Delta t \boldsymbol{R}^{k+1}, \Delta t \boldsymbol{R}^{k+1} \right\rangle \\ &= \left(\mathbf{a}^{k+1} - \mathbf{a}^k \right)^T \mathbf{M} \left(\mathbf{a}^{k+1} - \mathbf{a}^k \right)^T \\ &+ 2\Delta t \left(\mathbf{I}_I \left[\mathbf{a}^{k+1} \right] + \mathbf{I}_E \left[\mathbf{a}^k \right] \right)^T \mathbf{C} \left(\mathbf{a}^{k+1} - \mathbf{a}^k \right) \\ &+ \Delta t^2 \left(\mathbf{I}_I \left[\mathbf{a}^{k+1} \right] + \mathbf{I}_E \left[\mathbf{a}^k \right] \right)^T \mathbf{X} \left(\mathbf{I}_I \left[\mathbf{a}^{k+1} \right] + \mathbf{I}_E \left[\mathbf{a}^k \right] \right). \end{split}$$

Example: I. Burgers Equation

Burgers Equation

$$\partial_t u - \nabla \mathbf{v} u^{\mu_1} = 0 \tag{2}$$

with (implicit) finite volume discretization with Engquist Osher flux.

Example: I. Burgers Equation

Burgers Equation

$$\partial_t u - \nabla \mathbf{v} u^{\mu_1} = 0 \tag{2}$$

with (implicit) finite volume discretization with Engquist Osher flux.

- ▶ Parameter vector $\mu := (\mu_1) \in [0, 2]$.
- smooth initial data.
- lacktriangleright rectangular 120 imes 60 grid with K=100 time steps.

Example I: Solution snapshots

Example I: Empirical interpolation of $\mathcal{L}_{h,I}$

Illustration of interpolation DOF selection for Burgers problem. DOFs corresponding to darker points are selected first.

Example I: Table

•	di	m	$(\mathcal{W}_h$)	960
	uı	111	(V V h	,	900

- $\blacktriangleright~\nu_{\rm max}~\approx 1-20$
- ► #M_{train} 28

N	М	ø-runtime[s]	max. error	ø-offline time[h]
7,200	0	90.01	0.00	0
42	83	4.42	$1.15 \cdot 10^{-3}$	0.96
83	166	6.23	$6.03 \cdot 10^{-5}$	1.34
125	250	8.99	$7.43 \cdot 10^{-6}$	1.74
166	333	11.6	$8.33 \cdot 10^{-7}$	2.23
208	416	15.64	$2.47 \cdot 10^{-7}$	2.78
249	499	19.56	$2.38 \cdot 10^{-7}$	3.4

N	М	ø-runtime[s]	max. error	ø-offline time[h]
0	-1	90.01	0.00	0
42	72	4.44	$1.73 \cdot 10^{-3}$	0.54
83	144	6.04	$5.74 \cdot 10^{-5}$	1.09
125	216	8.37	$7.30 \cdot 10^{-6}$	1.55
167	288	11.92	$7.63 \cdot 10^{-7}$	2.08
208	360	15.08	$2.31 \cdot 10^{-7}$	2.69
233	402	16.48	$1.55 \cdot 10^{-7}$	3.27

Example I: Error landscape

Example II: Nonlinear Diffusion

Nonlinear Diffusion

Problem definition:

$$\partial_t u - m \Delta u^p = 0 \quad \text{in } \Omega \times [0,1], \qquad u(\cdot,0) = c_0 + u_0 \quad \text{on } \Omega \times \{0\}$$

Example II: Nonlinear Diffusion

Nonlinear Diffusion

Problem definition:

$$\partial_t u - m\Delta u^p = 0$$
 in $\Omega \times [0,1]$, $u(\cdot,0) = c_0 + u_0$ on $\Omega \times \{0\}$

- ▶ Parametrization $\mu = (p, m, c_0) \in [1, 5] \times [0, 0.01] \times [0, 0.2]$
- ho $\Omega = [0,1]^2$ with homogeneous boundary conditions
- rectangular 100x100 grid with K = 80 time steps.

Example II: Solution snapshots

Initial data:

Sample trajectories:

- c) $\mu = (2, 0.01, 0.2)$, d) $\mu = (2, 0.01, 0.0)$,
- e) $\mu = (4, 0.01, 0.2)$, f) $\mu = (4, 0.01, 0.0)$

Example II: Greedy error convergence

Example II: Greedy error convergence

Example II: Numerical results

•	dim	(Wi)	10000
	uiiiii	\ r r n	,	10000

- $\nu_{
 m max} pprox 1-20$
- ► #M_{train,0} 27.
- ► #M_{train} 305

N	М	ø-runtime[s]	max. error	ø-offline time[h]
0	0	55.38	0.00	0
17	71	1.57	$3.56 \cdot 10^{-3}$	1.35
33	142	1.95	$8.33 \cdot 10^{-4}$	1.67
50	213	2.51	$2.08 \cdot 10^{-4}$	2.07
66	283	3.19	$5.88 \cdot 10^{-5}$	2.43
83	354	4.07	$5.55 \cdot 10^{-5}$	2.88
99	425	5.3	$4.06 \cdot 10^{-5}$	3.3

N	М	ø-runtime[s]	max. error	ø-offline time[h]
0	-1	55.38	0.00	0
19	72	1.61	$3.01 \cdot 10^{-3}$	0.16
37	143	2.07	$7.90 \cdot 10^{-4}$	0.45
56	215	2.67	$1.66 \cdot 10^{-4}$	1.01
74	286	3.6	$6.36 \cdot 10^{-5}$	1.69
93	358	4.83	$3.54 \cdot 10^{-5}$	2.72
111	429	6.55	$1.96 \cdot 10^{-5}$	4.02

Example II: A posteriori error estimator

Efficiency of error estimator
$$\eta$$
: $\lambda(\mu) := \frac{\eta(\mu)}{\|u_{\pmb{h}}(\mu) - u_{\mathsf{red}}(\mu)\|}$

Error bar plot showing mean and standard deviation of error estimator efficiency over a sample of 100 random parameters for different values of M'. The dots indicate the minimum (\bullet) and maximum (\circ) efficiency.

Other numerical experiments

- ▶ Richards Equation with simple geometry transformation
- ► Two-phase flow in porous media (without parametrization and very simple)

Numerical results

- ► Problems are implemented with our software package RBmatlab (http://www.morepas.org/software).
- ► Computations are executed on compute nodes of the PALMA cluster at the university of Münster with Intel Xeon Westmere X5650, 2,67 GHz processors and 24 GB RAM per node.

Goals specification

- ► Abstract reduced basis framework
- ▶ Re-use of (existing) implementations of PDE discretizations
- ▶ Short implementation time for the reduced simulations

Abstract Software concept

- Control of offline algorithms
 - ► POD-greedy, El-greedy, PODEI-greedy, . . .
 - ► Gathering and post-processing of reduced matrices
- ► Low-dimensional computations
 - Reduced simulations
 - A posteriori error estimation
- Low-dimensional data visualization
- (Implemented in Matlab)

- Storage / manipulation of reduced spaces
- ► Efficient high dimensional linear algebra algorithms
 - ▶ POD, orthonormalization, Gram-Matrix computations
- Parametrization
- ▶ (Implemented in C++)
 - based on DUNE core modules (http://dune-project.org)

The glue

- Communication between Dune-RB and RBmatlab can be realized by
 - 1. compiling Dune-RB example as (mex-) library for matlab, or
 - 2. TCP/IP communication between two stand-alone applications.

RBMATLAB > matlab < M A T L A B (R) > Copyright 1984-2008 The MathWorks, Inc. Version 7.6.0.324 (R2008a) February 10, 2008 To get started, type one of these: helpwin, helpdesk, or demo For product information, visit www.mathworks.com. starting up rbmatlab in directory: /home/martin/projects/rbm-results/rbmatlab Using the following directory for large temporary data: /tmp Using the following directory for data files storing results: /home/martin/projects/rbm-results/results Using the following directory as RBMATLABHOME: /home/martin/projects/rbm-results/rbmatlab skipped clearing filecache for function-calls!

```
DUNE-RB > ./dunerbServer
 YaspGridParameterBlock: Parameter 'overlap' not specified.
 ulting to '0'.
 server: waiting for connections...
```

```
< M A T L A B (R) >
Copyright 1984-2008 The MathWorks, Inc.
Version 7.6.0.324 (R2008a)
February 10. 2008
```

To get started, type one of these: helpwin, helpdesk, or demo

For product information, visit www.mathworks.com.

starting up rbmatlab in directory: /home/martin/projects/rbm-results/rbmatlab Using the following directory for large temporary data:

/tmp
Using the following directory for data files storing results:
/home/martin/projects/rbm-results/results
Using the following directory as RBMATLABHOME:
/home/martin/projects/rbm-results/rbmatlab

/home/martin/projects/rbm-results/rbmatlab skipped clearing filecache for function-calls!

client: connect: Connection refused Warning: connection to ::1 failed

□ DUME-RB → ,/dunerbServer

'AspGridParameterBlock: Parameter 'overlap' not specified, defaulting to '0'.

server: waiting for connections...
server: got connection from 127.0.0.1

Received call for processing 'echo'

with 4 arguments and 3 return values.

```
copying argument no. 0
copying argument no. 1
copying argument no. 2
```

```
/home/martin/projects/rbm-results/rbmatlab
skipped clearing filecache for function-calls!
>> [a,b,c] = ...
mexclient('echo', [1, 2], ....
                  struct('field', [1,2]), ...
                  { [1.2], [3.4] });
client: connect: Connection refused
Warning: connection to ::1 failed
client connected to 127.0.0.1
copying argument no. \theta
copying argument no. 1
copying argument no. 2
>> a
>> b
    field: [1 2]
>> C
    [1x2 double]
                    [1x2 double]
>>
```

```
DUNE-RB > ./dunerbServer
 YaspGridParameterBlock: Parameter 'overlap' not specified, defa
 ulting to '0'.
 server: waiting for connections...
 server: got connection from 127.0.0.1
 Received call for processing 'echo'
 with 4 arguments and 3 return values.
 copying argument no. 0
 copying argument no. 1
 copying argument no. 2
```

To get started, type one of these: helpwin, helpdesk, or demo

For product information, visit www.mathworks.com.

starting up rbmatlab in directory: /home/martin/projects/rbm-results/rbmatlab Using the following directory for large temporary data:

/tmp Using the following directory for data files storing results: /home/martin/projects/rbm-results/results Using the following directory as RBMATLABHOME: /home/martin/projects/rbm-results/rbmatlab

/nome/martin/projects/rbm-results/rbmatlab skipped clearing filecache for function-calls!

>>

>> % load model parameters

>> model = convdiff_dune_model; Warning: Name is nonexistent or not a directory: mexclient.

> In path at 110 In addpath at 87

In addpath at 8/
In convdiff_dune_model at 95
client: connect: Connection refused
Warning: connection to ::1 failed

client connected to 127.0.0.1 >>> □

DUNE-RB > ./dunerbServer

YaspGridParameterBlock: Parameter 'overlap' not specified, defaulting to '0'.

server: waiting for connections... server: got connection from 127.0.0.1

Received call for processing 'init_model'
with 1 arguments and 1 return values.

read discfunclist_xdr from headerfile, size = 20 Using the explicit ode solver! In order to use a different disc retization, change the 'DISCRETIZATION' make variable

Received call for processing 'get_mu' with 1 arguments and 1 return values.

Received call for processing 'rb_symbolic_coefficients' with 1 arguments and 1 return values.

4 D > 4 A > 4 B > 4 B > 900

> In path at 110 In addpath at 87 In convdiff dune model at 95 client: connect: Connection refused Warning: connection to ::1 failed client connected to 127 A A 1 >> model.rb problem type ans = lin evol >> model.RB generation mode ans = greedy uniform fixed >> model.RB stop Nmax ans = 20 >> model.T % this is read from DUNE-RB <<<<< ans = >>

DUNE-RB > ./dunerbServer YaspGridParameterBlock: Parameter 'overlap' not specified, defa ulting to '0'. server: waiting for connections... server: got connection from 127.0.0.1 Received call for processing 'init model' with 1 arguments and 1 return values. _____ read discfunclist xdr from headerfile, size = 20 Using the explicit ode solver! In order to use a different disc retization, change the 'DISCRETIZATION' make variable Received call for processing 'get mu' with 1 arguments and 1 return values. Received call for processing 'rb symbolic coefficients' with 1 arguments and 1 return values.

```
ans =
lin evol
>> model.RB generation mode
ans =
greedy uniform fixed
>> model.RB stop Nmax
ans =
    20
>> model.T
                          % this is read from DUNE-RB <<<<<
ans =
55
>>
>> % generate high dimensional model specific data, like e.g.
>> % the grid
>> model data = gen model data(model);
>>
```

```
DUNE-RB > ./dunerbServer
 YaspGridParameterBlock: Parameter 'overlap' not specified. defa
 ulting to '0'.
 server: waiting for connections...
 server: got connection from 127.0.0.1
 Received call for processing 'init model'
 with 1 arguments and 1 return values.
 read discfunclist xdr from headerfile, size = 20
 Using the explicit ode solver! In order to use a different disc
 retization, change the 'DISCRETIZATION' make variable
 Received call for processing 'get mu'
 with 1 arguments and 1 return values.
 Received call for processing 'rb symbolic coefficients'
 with 1 arguments and 1 return values.
 Received call for processing 'gen model data'
 with 1 arguments and 1 return values.
```

>> % Just for fun: Do a DETATIED simulation in DUNE-RB >>>>> Received call for processing 'rb symbolic coefficients' >> % first set the parameter mu with 1 arguments and 1 return values. >> model = set mu(model, [0.0 0.5 1.0]); >> % then run the simulation >> tic: sim data = detailed simulation(model, model data); toc Received call for processing 'gen model data' Flapsed time is 11.795319 seconds. with 1 arguments and 1 return values. >> >> >> Received call for processing 'set mu' with 2 arguments and 0 return values. >> ->> >> Received call for processing 'detailed simulation' >> with 1 arguments and 1 return values. * >> opening file: ./grape//solution.series >> >> Received call for processing 'set mu' 55 with 2 arguments and 0 return values. 55 >> >> Received call for processing 'detailed simulation' >> >> with 1 arguments and 1 return values. ->> >> opening file: ./grape//solution.series >>


```
>>
>>
>> detailed_data.RB_info
ans =
                           M train: [3x64 double]
                  max err sequence: [1x20 double]
                       mu sequence: [3x20 double]
                        mu ind seq: [1x20 double]
                toc value sequence: [1x20 double]
                      M first errs: [64x1 double]
                stopped on epsilon: 0
   stopped on max val train ratio: 0
                stopped on timeout: 0
                  stopped on Nmax: 1
        stopped on empty extension: 0
      stopped on Nlimit estimation: 0
                       M last errs: [64x1 double]
                      elapsed time: 3.0000e-06
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
```


>> % NOW: Generate reduced matrices for online computations >> % and get them to RBMATLAB <*****

>> reduced data = gen reduced data(model, detailed data)

reduced data =

```
a0: {[1x20 double]}
LL_I: {2x1 cell}
LL_E: {5x1 cell}
bb: {4x1 cell}
K_II: {4x1 cell}
K_IE: {10x1 cell}
K_IE: {25x1 cell}
m_I: {8x1 cell}
m_E: {20x1 cell}
m: {16x1 cell}
```

N: 20

»
»
»
»
»
»
»
»
»
»

Received call for processing 'rb_init_values' with 2 arguments and 1 return values.

Received call for processing 'rb_operators' with 2 arguments and 1 return values.

Received call for processing 'set_mu' with 2 arguments and 0 return values.

Received call for processing 'reconstruct_and_compare' with 2 arguments and 0 return values.

opening file: ./grape//solution.series

Received call for processing 'rb_init_values' with 2 arguments and 1 return values.

Received call for processing 'rb_operators'
with 2 arguments and 1 return values.

L

>> % The matrices are all of small sizes: e.g. the explicit >> % discretization operator: LL E >> sizes=cellfun(@(X) size(X), reduced data.LL E, ... 'UniformOutput', false): >> sizes{:} ans = 20 20 >>

Received call for processing 'rb init values' with 2 arguments and 1 return values. Received call for processing 'rb operators' with 2 arguments and 1 return values. Received call for processing 'set mu' with 2 arguments and 0 return values. Received call for processing 'reconstruct and compare' with 2 arguments and 0 return values. opening file: ./grape//solution.series Received call for processing 'rb init values' with 2 arguments and 1 return values. -----Received call for processing 'rb operators' with 2 arguments and 1 return values. ______

```
>> % Now fast reduced simulations are possible in RBMATLAB
>> % without any communication to DUNE-RB
                                                                Received call for processing 'rb init values'
                                                                with arguments and 1 return values.
>> model = model.set mu(model, [0 0.5 1], true);
>> tic; rb sim data=rb simulation(model, reduced data); toc
Elapsed time is 0.020223 seconds.
                                                                Received call for processing 'rb operators'
                                                                with 2 arguments and 1 return values.
>> rb sim data
                            0.02 seconds!
rb sim data =
                                                                Received call for processing 'set mu'
                                                                with 2 arguments and 0 return values.
       a: [20x113 double]
   Delta: [1x113 double]
    LL I: [20x20 double]
    LL E: [20x20 double]
                                                                Received call for processing 'pronstruct and compare'
>>
                                                                with 2 arguments and 0 return value
>> % Error estimator at end time:
                                                                opening file: ./grape//olution.series
>> rb sim data.Delta(end)
                                                                Received call for processing 'rb init values
                                                                with 2 arguments and 1 return values.
ans =
   0.0019
                                                                Received Fall for processing 'rb_operators'
>>
                                                                with 2 frauments and 1 return values.
>>
>>
>>
>>
```


So, we have a hammer for linear problems. . .

...and also one for nonlinear problems.

But how do we make our problems look like nails?

Interface to (linear) PDE discretizations

>> % Generate the reduced basis with the POD-Greedy algorithm >> % in DUNE-RB >>>>>>> >> detailed data = gen detailed data(model, model data): Starting RB extension loop Detected maximum error prediction 0.044006 for mu=[0.001 Extended RB to length 2 Detected maximum error prediction 0.015456 for mu=[0 1 1] Extended RB to length 3 Detected maximum error prediction 0.012877 for mu=[0 0.51 Extended RB to length 4 Detected maximum error prediction 0.01064 for mu=[0 Extended RB to length 5 Detected maximum error prediction 0.0084073 for mu=[0.001 A 5 Extended RB to length 6 Detected maximum error prediction 0.0073233 for mu=[0 1 1] Extended RB to length 7 Detected maximum error prediction 0.0055443 for mu=[0 1 1] Extended RB to length 8 Detected maximum error prediction 0.0048443 for mu=[0

0.51

Received call for processing 'rb operators' with 2 arguments and 1 return values. Received call for processing 'get mu' with 1 arguments and 1 return values. Received call for processing 'set mu' with 2 arguments and 0 return values. Received call for processing 'rb extension PCA' with 3 arguments and 1 return values. opening file: ./grape//solution.series Received call for processing 'set mu' with 2 arguments and 0 return values. Received call for processing 'rb init values' with 2 arguments and 1 return values.

Interface to (linear) PDE discretizations

Return affinely decomposed operator parts:

ightharpoonup components: \mathcal{L}_{h}^{q} and

ightharpoonup coefficients: $\sigma^q(\mu)$

Interface to (non-linear) PDE discretizations

Common dependencies for local operator evaluations

Interface to (non-linear) PDE discretizations

Common dependencies for local operator evaluations

Dune-RB grid wrapper

- ► During detailed simulation
 - ► Delegate calls directly to the grid
- During offline phase
 - Store all grid and function space information on the subgrid in low-dimensional data structures
- During online phase
 - Delegate calls low-dimensional data structures generated in offline phase.

More information

http://morepas.org/software

Outlook

Conclusion

- ▶ Model order reduction of general (scalar) parametrized evolution schemes
- with reduced basis methods and empirical interpolation for discrete operators
- ▶ Rigorous error control via a posteriori error estimator is possible.

Outlook

Conclusion

- ▶ Model order reduction of general (scalar) parametrized evolution schemes
- with reduced basis methods and empirical interpolation for discrete operators
- Rigorous error control via a posteriori error estimator is possible.

Future work

- ▶ Dealing with steep gradients in solution snapshots (non-linear reduced bases?)
- ► Variable time step width
- ▶ 2-Phase flow system
- ► Improve software